Lower Perplexity is
Not Always Human-Like

Tatsuki Kuribayashi'?, Yohei Oseki®4, Takumi Ito’?, Ryo Yoshida3,
Masayuki Asahara>, Kentaro Inui'4

1 Tohoku University, 2 Langsmith Inc., 3 University of Tokyo, 4 RIKEN, 5 NINJAL

ACL 2021



Question

What humans incrementally compute during online sentence processing?
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Question

e Can recent findings on human-like LMs be generalized across languages?
- Recent studies have focused almost exclusively on English

- Theories have been developed by the studies using languages with different sentence structure
(e.g., dependency locality theory was developed in SVO languages, and then the anti-locality theory was proposed in SOV
languages)
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Question

e Can recent findings on human-like LMs be generalized across languages?
- Recent studies have focused almost exclusively on English

- Theories have been developed by the studies using languages with different sentence structure
(e.g., dependency locality theory was developed in SVO languages, and then the anti-locality theory was proposed in SOV
languages)

e We specifically focus on English and Japanese
- Typologically different from each other
- Both languages have reliable eye-tracking data (i.e., Dundee Corpus and BCCWJ-EyeTrack)

act20o1 [N




Background

What determines the incremental processing difficulty during online sentence
processing?

Dependency locality theory [Hawkins, 1994][Gibson, 1998]...

Anti-locality [Konieczny, 2000]...

Surprisals computed from (typically) LMs [Hale, 2001][Levy, 2008][Smith&Levy, 2013]...

- When unexpected information (segment) appears, its processing load increases.
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Background

e Surprisals computed from LMs well correlate to human reading behavior

e Next question: what type of LMs can compute surprisals better simulating the human
reading behavior? [Roark+, 2009][Frank&Bod, 2011][Fossum&Levy, 2012][Hale+, 2018][Merkx&Frank, 2020][Wilcox+, 2020]

hierarchical or sequential?

lexicalized or non-lexicalized?

recurrence or attention?
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Recent findings

Re-examine the existing report—LMs with lower PPL could better simulate
human reading behaviors—as a representative of the recent findings
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(Flipped the original figure left to right)
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Recent findings

A LogLik

Re-examine the existing report—LMs with lower PPL could better simulate
human reading behaviors—as a representative of the recent findings
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Is using more data, more parameters, and
computational cost a recipe for creating

human-like LMs?

(Is there a scaling law for achieving human-like LMs?)
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“More data, parameters, and

computational cost lead to
lower PPL of LMs”

(Kaplan+, 2020)
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Experimental settings

Investigating the relationship between PPL and psychometric predictive
power of LMs in English and Japanese

e PPL o
- evaluated on the texts from eye-tracking data kS, %

. - 8o

e Psychometric predictive power £ 2
- how much surprisal contributes to modeling < %)
the gaze duration >0

o Q

Gaze duration ~ surprisal + baseline_features

gl PPL
Gaze duration ~ baseline_features
See Section 3.3
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Experimental settings

Investigating the relationship between PPL and psychometric predictive
power of LMs in English and Japanese

e PPL o
- evaluated on the texts from eye-tracking data kS, §_

: . © o

e Psychometric predictive power £ 2
- how much surprisal contributes to modeling < %)
the gaze duration >0

o Q

Gaze duration ~ surprisal + baseline_features

gl PPL
Gaze duration ~ baseline_features
See Section 3.3

Training 111 LMs with different configurations (e.g., architecture, training
data size, the number of parameter updates) for each language.
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Results
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Spearman’s r = -0.81

We found and fixed some issues in the preprocessing for the English part of our experiments after camera ready.
In this slide, we used the updated results, which are also shown in https://github.com/kuribayashi4/surprisal reading time en ja.
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https://github.com/kuribayashi4/surprisal_reading_time_en_ja

Results
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BCCWJ-EyeTrack (Japanese)
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Lower PPL is not always human-like
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Results

Dundee Corpus (English)
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Possible interpretation

e The Japanese language (SOV language) might have a less uniformity of
information density than English.
- [Maurits+, 2010] demonstrated that SOV language has less uniformity in information density.
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Word Word
Corpus analysis using English data [Maurits+, 2010]

We found that the coefficient of variation in gaze duration was 2.5 times higher in Japanese compared to
English. Specifically, in Japanese, the gaze duration tended to speed up towards the end of the sentence.

Dundee Corpus (English) BCCWJ-EyeTrack (Japanese)
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Possible interpretation

The LM objective function YN, log p(w;|w;), defines that the “ideal" is to
maximize all next word probabilities to 1.0 (a uniform goal).

English Japanese

Human reading time N
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The ideal of LMs

Wog W1 Wy W3 ... Wog W1 Wy W3 ...
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Analysis: probing nonuniform information density of
Japanese LMs

e Does tuning the LMs to the uniform goal (LM training objective) obscure
human-like dispersion in surprisal?

e We investigate whether surprisals from Japanese LMs exhibit the

nonuniformity with respect to syntactic category (like part-of-speech).
- Syntactic category was the most dominant linguistic factor for explaining the human gaze duration.
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Summary

e Examined whether recent report on the psychometric predictive power of
LMs can be generalized across languages.

e The report--the lower PPL a LM has, the more human-like the LM is--

might lack cross-linguistic universality.
- We couldn't fully deny the possibility that factors other than the differences in

languages (e.g., corpus size, noise on eye-tracking data, experimental settings)

affected our results.

e Hopefully, this study encourages researchers to further investigate the
universality of human language processing across languages.




