
Presenter: Naoya Inoue

Tohoku University / RIKEN AIP

Parameter-free Sentence Embedding via Orthogonal Basis

Ziyi Yang⇤1, Chenguang Zhu2, and Weizhu Chen3

1Department of Mechanical Engineering, Stanford university
2Microsoft Speech and Dialogue Research Group

3Microsoft Dynamics 365 AI
ziyi.yang@stanford.edu, {chezhu, wzchen}@microsoft.com

Abstract

We propose a simple and robust non-
parameterized approach for building sentence
representations. Inspired by the Gram-
Schmidt Process in geometric theory, we build
an orthogonal basis of the subspace spanned
by a word and its surrounding context in a sen-
tence. We model the semantic meaning of a
word in a sentence based on two aspects. One
is its relatedness to the word vector subspace
already spanned by its contextual words. The
other is the word’s novel semantic meaning
which shall be introduced as a new basis vector
perpendicular to this existing subspace. Fol-
lowing this motivation, we develop an innova-
tive method based on orthogonal basis to com-
bine pre-trained word embeddings into sen-
tence representations. This approach requires
zero parameters, along with efficient inference
performance. We evaluate our approach on 11
downstream NLP tasks. Experimental results
show that our model outperforms all existing
non-parameterized alternatives in all the tasks
and it is competitive to other approaches rely-
ing on either large amounts of labelled data or
prolonged training time.

1 Introduction

The concept of word embeddings has been preva-
lent in NLP community in recent years, as they can
characterize semantic similarity between any pair
of words, achieving promising results in a large
number of NLP tasks (Mikolov et al., 2013; Pen-
nington et al., 2014; Salle et al., 2016). However,
due to the hierarchical nature of human language,
it is not sufficient to comprehend text solely based
on isolated understanding of each word. This has
prompted a recent rise in search for semantically
robust embeddings for longer pieces of text, such
as sentences and paragraphs.

⇤Most of the work was done during summer internship at
Microsoft.

Based on learning paradigms, the existing ap-
proaches to sentence embeddings can be catego-
rized into two categories: i) parameterized meth-
ods and ii) non-parameterized methods.

Parameterized sentence embeddings. These
models are parameterized and require training to
optimize their parameters. SkipThought (Kiros
et al., 2015) is an encoder-decoder model that pre-
dicts adjacent sentences. Pagliardini et al. (2018)
proposes an unsupervised model, Sent2Vec, to
learn an n-gram feature in a sentence to predict the
center word from the surrounding context. Quick
thoughts (QT) (Logeswaran and Lee, 2018) re-
places the encoder with a classifier to predict con-
text sentences from candidate sequences. Khodak
et al. (2018) proposes à la carte to learn a linear
mapping to reconstruct the center word from its
context. Conneau et al. (2017) generates the sen-
tence encoder InferSent using Natural Language
Inference (NLI) dataset. Universal Sentence En-
coder (Yang et al., 2018; Cer et al., 2018) uti-
lizes the emerging transformer structure (Vaswani
et al., 2017; Devlin et al., 2018) that has been
proved powerful in various NLP tasks. The model
is first trained on large scale of unsupervised data
from Wikipedia and forums, and then trained on
the Stanford Natural Language Inference (SNLI)
dataset. Wieting and Gimpel (2017b) propose
the gated recurrent averaging network (GRAN),
which is trained on Paraphrase Database (PPDB)
and English Wikipedia. Subramanian et al. (2018)
leverages a multi-task learning framework to gen-
erate sentence embeddings. Wieting et al. (2015a)
learns the paraphrastic sentence representations as
the simple average of updated word embeddings.

Non-parameterized sentence embedding.
Recent work (Arora et al., 2017) shows that,
surprisingly, a weighted sum or transformation
of word representations can outperform many
sophisticated neural network structures in sen-

※図表は論文より引用

(EMNLP2019)

/19

Sentence embedding

• Vector representation of sentence
– 𝑠 = “Don’t think, feel.”

→ 𝒄$ =[3.21, 1.23, 0.85, …, 3.41]
• Desirable properties (Bowman+ Tutorial @ *SEM2019)

• Applications: everywhere
2

A general-purpose encoder
● Roughly, we might expect effective encoder representations to capture:

○ Word contents and word order.

○ (Rough) grammatical structure.

○ Cues to connotation and social meaning.

○ Unambiguous propositional information (of the kind expressed in a semantic parse). 
 

● These are still neural networks, so all of this will be implicit.

Reusable Encoder

Task Model

�4

/19

Previous approaches: parametrized

• Encoder is parametrized and requires training
– SkipThought (Kiros+2017), Sent2Vec (Pagliardini+2018),

QuickThought (Logeswaran+2018), à la carte (Khodak+2018),
InferSent (Conneau+ 2017), Universal Sentence Encoder
(Cer+2018), ELMo (Peters+2017), BERT (Devlin+2019) etc.

3

SkipThought (Kiros+2017)

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

BERT (Devlin+2019)
Figure 1: The skip-thoughts model. Given a tuple (si�1, si, si+1) of contiguous sentences, with si
the i-th sentence of a book, the sentence si is encoded and tries to reconstruct the previous sentence
si�1 and next sentence si+1. In this example, the input is the sentence triplet I got back home. I
could see the cat on the steps. This was strange. Unattached arrows are connected to the encoder
output. Colors indicate which components share parameters. heosi is the end of sentence token.

of books # of sentences # of words # of unique words mean # of words per sentence
11,038 74,004,228 984,846,357 1,316,420 13

Table 1: Summary statistics of the BookCorpus dataset [9]. We use this corpus to training our
model.

range of interaction between characters. Furthermore, with a large enough collection the training
set is not biased towards any particular domain or application. Table 2 shows nearest neighbours
of sentences from a model trained on the BookCorpus dataset. These results show that skip-thought
vectors learn to accurately capture semantics and syntax of the sentences they encode.

We evaluate our vectors in a newly proposed setting: after learning skip-thoughts, freeze the model
and use the encoder as a generic feature extractor for arbitrary tasks. In our experiments we con-
sider 8 tasks: semantic-relatedness, paraphrase detection, image-sentence ranking and 5 standard
classification benchmarks. In these experiments, we extract skip-thought vectors and train linear
models to evaluate the representations directly, without any additional fine-tuning. As it turns out,
skip-thoughts yield generic representations that perform robustly across all tasks considered.

One difficulty that arises with such an experimental setup is being able to construct a large enough
word vocabulary to encode arbitrary sentences. For example, a sentence from a Wikipedia article
might contain nouns that are highly unlikely to appear in our book vocabulary. We solve this problem
by learning a mapping that transfers word representations from one model to another. Using pre-
trained word2vec representations learned with a continuous bag-of-words model [8], we learn a
linear mapping from a word in word2vec space to a word in the encoder’s vocabulary space. The
mapping is learned using all words that are shared between vocabularies. After training, any word
that appears in word2vec can then get a vector in the encoder word embedding space.

2 Approach

2.1 Inducing skip-thought vectors

We treat skip-thoughts in the framework of encoder-decoder models 1. That is, an encoder maps
words to a sentence vector and a decoder is used to generate the surrounding sentences. Encoder-
decoder models have gained a lot of traction for neural machine translation. In this setting, an
encoder is used to map e.g. an English sentence into a vector. The decoder then conditions on this
vector to generate a translation for the source English sentence. Several choices of encoder-decoder
pairs have been explored, including ConvNet-RNN [10], RNN-RNN [11] and LSTM-LSTM [12].
The source sentence representation can also dynamically change through the use of an attention
mechanism [13] to take into account only the relevant words for translation at any given time. In our
model, we use an RNN encoder with GRU [14] activations and an RNN decoder with a conditional
GRU. This model combination is nearly identical to the RNN encoder-decoder of [11] used in neural
machine translation. GRU has been shown to perform as well as LSTM [2] on sequence modelling
tasks [14] while being conceptually simpler. GRU units have only 2 gates and do not require the use
of a cell. While we use RNNs for our model, any encoder and decoder can be used so long as we
can backpropagate through it.

Assume we are given a sentence tuple (si�1, si, si+1). Let wt
i denote the t-th word for sentence si

and let xt
i denote its word embedding. We describe the model in three parts: the encoder, decoder

and objective function.

1A preliminary version of our model was developed in the context of a computer vision application [9].

2

/19

Previous approaches: parameter-free

• Encoder has no parameters and requires NO further
training upon pretrained word embeddings
– SIF (Arora+2017), uSIF (Ethayarajh+2018),

p-mean (Ruckle+2018)

4

Published as a conference paper at ICLR 2017

Algorithm 1 Sentence Embedding

Input: Word embeddings {vw : w 2 V}, a set of sentences S , parameter a and estimated probabil-
ities {p(w) : w 2 V} of the words.

Output: Sentence embeddings {vs : s 2 S}
1: for all sentence s in S do

2: vs 1
|s|

P
w2s

a
a+p(w)vw

3: end for

4: Form a matrix X whose columns are {vs : s 2 S}, and let u be its first singular vector
5: for all sentence s in S do

6: vs vs � uu>vs
7: end for

cs to be emitted for two reasons: a) by chance from the term ↵p(w); b) if w is correlated with the
common discourse vector c0.

Computing the sentence embedding. The word embeddings yielded by our model are actually
the same. 2 The sentence embedding will be defined as the max likelihood estimate for the vector cs
that generated it. (In this case MLE is the same as MAP since the prior is uniform.) We borrow the
key modeling assumption of (Arora et al., 2016), namely that the word vw’s are roughly uniformly
dispersed, which implies that the partition function Zc is roughly the same in all directions. So
assume that Zc̃s is roughly the same, say Z for all c̃s. By the model (2) the likelihood for the
sentence is

p[s | cs] =
Y

w2s

p(w | cs) =
Y

w2s


↵p(w) + (1� ↵)

exp (hvw, c̃si)
Z

�
.

Let
fw(c̃s) = log


↵p(w) + (1� ↵)

exp (hvw, c̃si)
Z

�

denote the log likelihood of sentence s. Then, by simple calculus we have,

rfw(c̃s) =
1

↵p(w) + (1� ↵) exp (hvw, c̃si) /Z
1� ↵

Z
exp (hvw, c̃si) vw.

Then by Taylor expansion, we have,

fw(c̃s) ⇡ fw(0) +rfw(0)>c̃s

= constant +
(1� ↵)/(↵Z)

p(w) + (1� ↵)/(↵Z)
hvw, c̃si .

Therefore, the maximum likelihood estimator for c̃s on the unit sphere (ignoring normalization) is
approximately,3

argmax
X

w2s

fw(c̃s) /
X

w2s

a

p(w) + a
vw, where a =

1� ↵

↵Z
. (3)

That is, the MLE is approximately a weighted average of the vectors of the words in the sentence.
Note that for more frequent words w, the weight a/(p(w) + a) is smaller, so this naturally leads to
a down weighting of the frequent words.

To estimate cs, we estimate the direction c0 by computing the first principal component of c̃s’s for
a set of sentences.4 In other words, the final sentence embedding is obtained by subtracting the
projection of c̃s’s to their first principal component. This is summarized in Algorithm 1.

2We empirically discovered the significant common component c0 in word vectors built by existing meth-
ods, which inspired us to propose our theoretical model of this paper.

3Note that maxc:kck=1 C + hc, gi = g/kgk for any constant C.
4Here the first principal component is computed without centralizing c̃s’.

4

SIF (Arora et al. 2017)

which likewise used LSTMs to learn sentence em-
beddings but trained on other tasks (i.e. identifying
paraphrase pairs), usually did not achieve signifi-
cant improvements compared to simple word aver-
aging models (Wieting et al., 2016).

Cross-lingual sentence embeddings have re-
ceived comparatively less attention. Hermann
and Blunsom (2014) learn cross-lingual word em-
beddings and infer document-level representations
with simple composition of unigrams or bigrams,
finding that added word embeddings perform on
par with the more complex bigram model. Sev-
eral authors proposed to extend ParagraphVec
(Le and Mikolov, 2014) to the cross-lingual case:
Pham et al. (2015) add a bilingual constraint to
learn cross-lingual representations using aligned
sentences; Mogadala and Rettinger (2016) add a
general cross-lingual regularization term to Para-
graphVec; Zhou et al. (2016) train task-specific rep-
resentations for sentiment analysis based on Para-
graphVec by minimizing the distance between para-
graph embeddings of translations. Finally, Chandar
et al. (2013) train a cross-lingual auto-encoder to
learn representations that allow reconstructing sen-
tences and documents in different languages, and
Schwenk and Douze (2017) use representations
learned by an NMT model for translation retrieval.

To our best knowledge, all of these cross-lingual
works evaluate on few individual datasets, and none
focuses on universal cross-lingual sentence embed-
dings that perform well across a wide range of
different tasks.

3 Concatenated Power Mean
Embeddings

Power means Our core idea is generalizing
average word embeddings, which summarize a
sequence of embeddings w1, ...,wn 2 Rd by
component-wise arithmetic averages:

8i = 1, . . . , d :
w1i + · · ·+ wni

n

This operation summarizes the ‘time-series’
(w1i, . . . , wni) of variable length n by their arith-
metic mean. Of course, then, we might also
compute other statistics on these time-series such
as standard deviation, skewness (and further mo-
ments), Fourier transformations, etc., in order to
capture different information from the sequence.

For simplicity and to focus on only one type
of extension, we consider in this work so-called

power means (Hardy et al., 1952), defined as:

✓
x
p
1 + · · ·+ x

p
n

n

◆1/p

; p 2 R [{±1}

for a sequence of numbers (x1, . . . , xn). This gen-
eralized form retrieves many well-known means
such as the arithmetic mean (p = 1), the geometric
mean (p = 0), and the harmonic mean (p = �1).
In the extreme cases, when p = ±1, the power
mean specializes to the minimum (p = �1) and
maximum (p = +1) of the sequence.

Concatenation For vectors w1, . . . ,wn, con-
cisely written as a matrix W = [w1, . . . ,wn] 2
Rn⇥d, we let Hp(W) stand for the vector in Rd

whose d components are the power means of the
sequences (w1i, . . . , wni), for all i = 1, . . . , d.

Given a sentence s = w1 · · ·wn we first look up
the embeddings W(i) = [w(i)

1 , . . . ,w(i)
n] 2 Rn⇥di

of its words from some embedding space Ei. To get
summary statistics of the sentence, we then com-
pute K power means of s and concatenate them:

s(i) = Hp1(W
(i))� · · ·�HpK (W

(i))

where � stands for concatenation and p1, . . . , pK

are K different power mean values. Our result-
ing sentence representation, denoted as s(i) =
s(i)(p1, . . . , pk), lies in Rdi·K .

To get further representational power from
different word embeddings, we concatenate
different power mean sentence representations
s(i)(p1, . . . , pk) obtained from different embed-
ding spaces Ei:

M

i

s(i) (1)

The dimensionality of this representation is
K

P
i di. When all embedding spaces have the

same dimensionality d, this becomes K · L · d,
where L is the number of spaces considered.

4 Monolingual Experiments

4.1 Experimental Setup
Tasks We replicate the setup of Conneau et al.
(2017) and evaluate on the six transfer tasks listed
in their table 1. Since their selection of tasks is
slightly biased towards sentiment analysis, we add
three further tasks: AM, an argumentation mining
task based on Stab and Gurevych (2017) where
sentences are classified into the categories major

which likewise used LSTMs to learn sentence em-
beddings but trained on other tasks (i.e. identifying
paraphrase pairs), usually did not achieve signifi-
cant improvements compared to simple word aver-
aging models (Wieting et al., 2016).

Cross-lingual sentence embeddings have re-
ceived comparatively less attention. Hermann
and Blunsom (2014) learn cross-lingual word em-
beddings and infer document-level representations
with simple composition of unigrams or bigrams,
finding that added word embeddings perform on
par with the more complex bigram model. Sev-
eral authors proposed to extend ParagraphVec
(Le and Mikolov, 2014) to the cross-lingual case:
Pham et al. (2015) add a bilingual constraint to
learn cross-lingual representations using aligned
sentences; Mogadala and Rettinger (2016) add a
general cross-lingual regularization term to Para-
graphVec; Zhou et al. (2016) train task-specific rep-
resentations for sentiment analysis based on Para-
graphVec by minimizing the distance between para-
graph embeddings of translations. Finally, Chandar
et al. (2013) train a cross-lingual auto-encoder to
learn representations that allow reconstructing sen-
tences and documents in different languages, and
Schwenk and Douze (2017) use representations
learned by an NMT model for translation retrieval.

To our best knowledge, all of these cross-lingual
works evaluate on few individual datasets, and none
focuses on universal cross-lingual sentence embed-
dings that perform well across a wide range of
different tasks.

3 Concatenated Power Mean
Embeddings

Power means Our core idea is generalizing
average word embeddings, which summarize a
sequence of embeddings w1, ...,wn 2 Rd by
component-wise arithmetic averages:

8i = 1, . . . , d :
w1i + · · ·+ wni

n

This operation summarizes the ‘time-series’
(w1i, . . . , wni) of variable length n by their arith-
metic mean. Of course, then, we might also
compute other statistics on these time-series such
as standard deviation, skewness (and further mo-
ments), Fourier transformations, etc., in order to
capture different information from the sequence.

For simplicity and to focus on only one type
of extension, we consider in this work so-called

power means (Hardy et al., 1952), defined as:

✓
x
p
1 + · · ·+ x

p
n

n

◆1/p

; p 2 R [{±1}

for a sequence of numbers (x1, . . . , xn). This gen-
eralized form retrieves many well-known means
such as the arithmetic mean (p = 1), the geometric
mean (p = 0), and the harmonic mean (p = �1).
In the extreme cases, when p = ±1, the power
mean specializes to the minimum (p = �1) and
maximum (p = +1) of the sequence.

Concatenation For vectors w1, . . . ,wn, con-
cisely written as a matrix W = [w1, . . . ,wn] 2
Rn⇥d, we let Hp(W) stand for the vector in Rd

whose d components are the power means of the
sequences (w1i, . . . , wni), for all i = 1, . . . , d.

Given a sentence s = w1 · · ·wn we first look up
the embeddings W(i) = [w(i)

1 , . . . ,w(i)
n] 2 Rn⇥di

of its words from some embedding space Ei. To get
summary statistics of the sentence, we then com-
pute K power means of s and concatenate them:

s(i) = Hp1(W
(i))� · · ·�HpK (W

(i))

where � stands for concatenation and p1, . . . , pK

are K different power mean values. Our result-
ing sentence representation, denoted as s(i) =
s(i)(p1, . . . , pk), lies in Rdi·K .

To get further representational power from
different word embeddings, we concatenate
different power mean sentence representations
s(i)(p1, . . . , pk) obtained from different embed-
ding spaces Ei:

M

i

s(i) (1)

The dimensionality of this representation is
K

P
i di. When all embedding spaces have the

same dimensionality d, this becomes K · L · d,
where L is the number of spaces considered.

4 Monolingual Experiments

4.1 Experimental Setup
Tasks We replicate the setup of Conneau et al.
(2017) and evaluate on the six transfer tasks listed
in their table 1. Since their selection of tasks is
slightly biased towards sentiment analysis, we add
three further tasks: AM, an argumentation mining
task based on Stab and Gurevych (2017) where
sentences are classified into the categories major

which likewise used LSTMs to learn sentence em-
beddings but trained on other tasks (i.e. identifying
paraphrase pairs), usually did not achieve signifi-
cant improvements compared to simple word aver-
aging models (Wieting et al., 2016).

Cross-lingual sentence embeddings have re-
ceived comparatively less attention. Hermann
and Blunsom (2014) learn cross-lingual word em-
beddings and infer document-level representations
with simple composition of unigrams or bigrams,
finding that added word embeddings perform on
par with the more complex bigram model. Sev-
eral authors proposed to extend ParagraphVec
(Le and Mikolov, 2014) to the cross-lingual case:
Pham et al. (2015) add a bilingual constraint to
learn cross-lingual representations using aligned
sentences; Mogadala and Rettinger (2016) add a
general cross-lingual regularization term to Para-
graphVec; Zhou et al. (2016) train task-specific rep-
resentations for sentiment analysis based on Para-
graphVec by minimizing the distance between para-
graph embeddings of translations. Finally, Chandar
et al. (2013) train a cross-lingual auto-encoder to
learn representations that allow reconstructing sen-
tences and documents in different languages, and
Schwenk and Douze (2017) use representations
learned by an NMT model for translation retrieval.

To our best knowledge, all of these cross-lingual
works evaluate on few individual datasets, and none
focuses on universal cross-lingual sentence embed-
dings that perform well across a wide range of
different tasks.

3 Concatenated Power Mean
Embeddings

Power means Our core idea is generalizing
average word embeddings, which summarize a
sequence of embeddings w1, ...,wn 2 Rd by
component-wise arithmetic averages:

8i = 1, . . . , d :
w1i + · · ·+ wni

n

This operation summarizes the ‘time-series’
(w1i, . . . , wni) of variable length n by their arith-
metic mean. Of course, then, we might also
compute other statistics on these time-series such
as standard deviation, skewness (and further mo-
ments), Fourier transformations, etc., in order to
capture different information from the sequence.

For simplicity and to focus on only one type
of extension, we consider in this work so-called

power means (Hardy et al., 1952), defined as:

✓
x
p
1 + · · ·+ x

p
n

n

◆1/p

; p 2 R [{±1}

for a sequence of numbers (x1, . . . , xn). This gen-
eralized form retrieves many well-known means
such as the arithmetic mean (p = 1), the geometric
mean (p = 0), and the harmonic mean (p = �1).
In the extreme cases, when p = ±1, the power
mean specializes to the minimum (p = �1) and
maximum (p = +1) of the sequence.

Concatenation For vectors w1, . . . ,wn, con-
cisely written as a matrix W = [w1, . . . ,wn] 2
Rn⇥d, we let Hp(W) stand for the vector in Rd

whose d components are the power means of the
sequences (w1i, . . . , wni), for all i = 1, . . . , d.

Given a sentence s = w1 · · ·wn we first look up
the embeddings W(i) = [w(i)

1 , . . . ,w(i)
n] 2 Rn⇥di

of its words from some embedding space Ei. To get
summary statistics of the sentence, we then com-
pute K power means of s and concatenate them:

s(i) = Hp1(W
(i))� · · ·�HpK (W

(i))

where � stands for concatenation and p1, . . . , pK

are K different power mean values. Our result-
ing sentence representation, denoted as s(i) =
s(i)(p1, . . . , pk), lies in Rdi·K .

To get further representational power from
different word embeddings, we concatenate
different power mean sentence representations
s(i)(p1, . . . , pk) obtained from different embed-
ding spaces Ei:

M

i

s(i) (1)

The dimensionality of this representation is
K

P
i di. When all embedding spaces have the

same dimensionality d, this becomes K · L · d,
where L is the number of spaces considered.

4 Monolingual Experiments

4.1 Experimental Setup
Tasks We replicate the setup of Conneau et al.
(2017) and evaluate on the six transfer tasks listed
in their table 1. Since their selection of tasks is
slightly biased towards sentiment analysis, we add
three further tasks: AM, an argumentation mining
task based on Stab and Gurevych (2017) where
sentences are classified into the categories major

p-mean (Ruckle+2018)

/19

This work: Geometric EMbedding (GEM)
• Key idea

– Parameter-free
ü Easy adaptation to novel domain
ü Fast inference speed

– Sentence embedding = Weighted sum of word embeddings
• Weight = Novelty (新規性) + Significance (重要性)

+ Corpus-wise uniqueness (コーパス全体からみた独自性; IDF)
• Key contribution

– New way to quantify semantic meaning (above) of words in
sentences via orthogonal basis

– Outperforms all previous parameter-free encoders (except for
uSIF)

5

/19

Sentence embedding in GEM
• Defines embedding 𝒄$ of sentence s = (𝑤(, 𝑤*, … ,𝑤,):

–𝒗/0: Pretrained word embedding of 𝑤1
–𝛼,: Novelty of 𝑤1 wrt contextual window (𝑚 words)
–𝛼$: Significance of 𝑤1 wrt contextual window (𝑚 words)
–𝛼4: Uniqueness of 𝑤1 in corpus

6

to be:

↵s =
k�(Si)� (qTi U

i)k2
2m+ 1

(5)

It turns out ↵s can be rewritten as

↵s =
kqTi U i⌃ik2
2m+ 1

=
kqTi U i⌃iV ik2

2m+ 1

=
kqTi Sik2
2m+ 1

=
qTi vwi

2m+ 1
=

r�1

2m+ 1

(6)

and we use the fact that V i is an orthogonal
matrix and qi is orthogonal to all but the last col-
umn of Si, vwi . Therefore, ↵s is essentially the
distance between wi and the context hyper-plane,
normalized by the context size.

Although ↵s and ↵n look alike in mathemat-
ics form, they model distinct quantities in word
wi against its contextual window. ↵n is a func-
tion of kqik2 divided by kwik2, i.e., the portion
of the new semantic meaning in word wi. In con-
trast, eq. (6) shows that ↵s equals kqik2 divided
by a constant, namely ↵s quantifies the absolute
magnitude of the new semantic meaning qi.

2.4 Corpus-wise Uniqueness
Similar to the idea of inverse document frequency
(IDF) (Sparck Jones, 1972), a word that is com-
monly present in the corpus is likely to be a stop
word, thus its corpus-wise uniqueness is small. In
our solution, we compute the principal directions
of the corpus and then measure their alignment
with the novel orthogonal basis vector qi. If there
is a high alignment, wi will be assigned a rela-
tively low corpus-wise uniqueness score, and vice
versa.

2.4.1 Compute Principal Directions of
Corpus

In Arora et al. (2017), given a corpus contain-
ing a set of N sentences, an embedding matrix
X = [x1,x2, . . . ,xN] 2 Rd⇥N is generated,
where xi is the sentence embedding for the i-th
sentence in the corpus, computed by SIF algo-
rithm. Then principal vectors of X are computed
and projections onto the principal vectors are re-
moved from each sentence embedding xi.

In contrast to Arora et al. (2017), we do not
form the embedding matrix after we obtain the
final sentence representation. Instead, we obtain
an intermediate coarse-grained embedding matrix
Xc = [g1, . . . , gN] as follows. Suppose the

SVD of the sentence matrix of the ith sentence is
S = [vw1 , . . . ,vwn] = U⌃V T . Then the coarse-
grained embedding for the ith sentence is defined
as:

gi =
nX

j=1

f(�j)U:,j (7)

where f(�j) is a monotonically increasing func-
tion. We then compute the top K principal vectors
{d1, ...,dK} of Xc, with singular values �1 �
�2 � ... � �K .

2.4.2 Uniqueness Score
In contrast to Arora et al. (2017), we select differ-
ent principal vectors of Xc for each sentence, as
different sentences may have disparate alignments
with the corpus. For each sentence, {d1, ...,dK}
are re-ranked in descending order of their corre-
lation with sentence matrix S. The correlation is
defined as:

oi = �ikSTdik2, 1  i  K (8)

Next, the top h principal vectors after re-
ranking based on oi are selected: D =
{dt1 , ...,dth}, with ot1 � ot2 � ... � oth and their
singular values in Xc are �d = [�t1 , ...,�th] 2
Rh.

Finally, a word wi with new semantic mean-
ing vector qi in this sentence will be assigned a
corpus-wise uniqueness score:

↵u = exp (�k�d � (qTi D)k2/h) (9)

This ensures that common stop words will have
their effect diminished since their embeddings are
closely aligned with the corpus’ principal direc-
tions.

2.5 Sentence Vector
A sentence vector cs is computed as a weighted
sum of its word embeddings, where the weights
come from three scores: a novelty score (↵n), a
significance score (↵s) and a corpus-wise unique-
ness score (↵u).

↵i = ↵n + ↵s + ↵u

cs =
X

i

↵ivwi
(10)

We provide a theoretical explanation of Equa-
tion (10) in Appendix.

to be:

↵s =
k�(Si)� (qTi U

i)k2
2m+ 1

(5)

It turns out ↵s can be rewritten as

↵s =
kqTi U i⌃ik2
2m+ 1

=
kqTi U i⌃iV ik2

2m+ 1

=
kqTi Sik2
2m+ 1

=
qTi vwi

2m+ 1
=

r�1

2m+ 1

(6)

and we use the fact that V i is an orthogonal
matrix and qi is orthogonal to all but the last col-
umn of Si, vwi . Therefore, ↵s is essentially the
distance between wi and the context hyper-plane,
normalized by the context size.

Although ↵s and ↵n look alike in mathemat-
ics form, they model distinct quantities in word
wi against its contextual window. ↵n is a func-
tion of kqik2 divided by kwik2, i.e., the portion
of the new semantic meaning in word wi. In con-
trast, eq. (6) shows that ↵s equals kqik2 divided
by a constant, namely ↵s quantifies the absolute
magnitude of the new semantic meaning qi.

2.4 Corpus-wise Uniqueness
Similar to the idea of inverse document frequency
(IDF) (Sparck Jones, 1972), a word that is com-
monly present in the corpus is likely to be a stop
word, thus its corpus-wise uniqueness is small. In
our solution, we compute the principal directions
of the corpus and then measure their alignment
with the novel orthogonal basis vector qi. If there
is a high alignment, wi will be assigned a rela-
tively low corpus-wise uniqueness score, and vice
versa.

2.4.1 Compute Principal Directions of
Corpus

In Arora et al. (2017), given a corpus contain-
ing a set of N sentences, an embedding matrix
X = [x1,x2, . . . ,xN] 2 Rd⇥N is generated,
where xi is the sentence embedding for the i-th
sentence in the corpus, computed by SIF algo-
rithm. Then principal vectors of X are computed
and projections onto the principal vectors are re-
moved from each sentence embedding xi.

In contrast to Arora et al. (2017), we do not
form the embedding matrix after we obtain the
final sentence representation. Instead, we obtain
an intermediate coarse-grained embedding matrix
Xc = [g1, . . . , gN] as follows. Suppose the

SVD of the sentence matrix of the ith sentence is
S = [vw1 , . . . ,vwn] = U⌃V T . Then the coarse-
grained embedding for the ith sentence is defined
as:

gi =
nX

j=1

f(�j)U:,j (7)

where f(�j) is a monotonically increasing func-
tion. We then compute the top K principal vectors
{d1, ...,dK} of Xc, with singular values �1 �
�2 � ... � �K .

2.4.2 Uniqueness Score
In contrast to Arora et al. (2017), we select differ-
ent principal vectors of Xc for each sentence, as
different sentences may have disparate alignments
with the corpus. For each sentence, {d1, ...,dK}
are re-ranked in descending order of their corre-
lation with sentence matrix S. The correlation is
defined as:

oi = �ikSTdik2, 1  i  K (8)

Next, the top h principal vectors after re-
ranking based on oi are selected: D =
{dt1 , ...,dth}, with ot1 � ot2 � ... � oth and their
singular values in Xc are �d = [�t1 , ...,�th] 2
Rh.

Finally, a word wi with new semantic mean-
ing vector qi in this sentence will be assigned a
corpus-wise uniqueness score:

↵u = exp (�k�d � (qTi D)k2/h) (9)

This ensures that common stop words will have
their effect diminished since their embeddings are
closely aligned with the corpus’ principal direc-
tions.

2.5 Sentence Vector
A sentence vector cs is computed as a weighted
sum of its word embeddings, where the weights
come from three scores: a novelty score (↵n), a
significance score (↵s) and a corpus-wise unique-
ness score (↵u).

↵i = ↵n + ↵s + ↵u

cs =
X

i

↵ivwi
(10)

We provide a theoretical explanation of Equa-
tion (10) in Appendix.

(10)

/19

Contextual window matrix

• Consider a sequence of contextual word embeddings
𝑤1 concatenated with 𝒗/0 :
– (𝒗/056,… , 𝒗/057, 𝒗/087, … , 𝒗/086, 𝒗/0)
–2𝑚 + 1 vectors
– e.g. “John loves dogs.”, (i=2) → (vJohn, vdogs, vloves)

7

/19

Constructing orthogonal basis
• Construct orthogonal basis 𝑞1=>,… , 𝑞1?> , 𝑞1 using

Gram-Schmidt Process
– e.g. (vJohn, vdogs, vloves)

• Use 𝑞1 to see relation between hyperplane spanned by
𝑞1=>,… , 𝑞1?> (context hyperplane) and 𝒗/0

8

q1 = vJohn

vdogs

q3

q1 = vJohn

q3

vloves

q2

q1 = vJohn

/19

Novelty

• Normalized distance from context hyperplane to word
embedding (sinθ)

9

word wi can be decomposed into

vwi =
i�1X

j=1

rjqj + riqi

rj = qTj vwi

ri = kvwi �
i�1X

j=1

rjqjk2

(1)

where
Pi�1

j=1 rjqj is the part in vwi that resides in
subspace S, and qi is orthogonal to S and is to be
added to S. The above algorithm is also known
as Gram-Schmidt Process. In the case of rank
deficiency, i.e., vwi is already a linear combination
of {q1, q2, ...qi�1}, qi is a zero vector and ri = 0.
In matrix form, this process is also known as QR
factorization, defined as follows.
QR factorization. Define an embedding matrix
of n words as A = [A:,1,A:,2, ...,A:,n] 2 Rd⇥n,
where A:,i is the embedding of the ith word wi in a
word sequence (w1, . . . , wi, . . . , wn). A 2 Rd⇥n

can be factorized into A = QR, where the non-
zero columns in Q 2 Rd⇥n are the orthonormal
basis, and R 2 Rn⇥n is an upper triangular ma-
trix.

The process above computes the novel semantic
meaning of a word w.r.t all preceding words. As
the meaning of a word influences and is influenced
by its close neighbors, we now calculate the novel
orthogonal basis vector qi of each word wi in its
neighborhood, rather than only w.r.t the preceding
words.

Definition 1 (Contextual Window Matrix)
Given a word wi, and its m-

neighborhood window inside the sentence
(wi�m, . . . , wi�1, wi, wi+1, . . . , wi+m) , define
the contextual window matrix of word wi as:

Si = [vwi�m ...vwi�1 ,vwi+1 ...vwi+m ,vwi] (2)

Here we shuffle vwi to the end of Si to compute
its novel semantic information compared with its
context. Now the QR factorization of Si is

Si = QiRi (3)

Note that qi is the last column of Qi, which is also
the new orthogonal basis vector to this contextual
window matrix.

Next, in order to generate the embedding for a
sentence, we will assign a weight to each of its
words. This weight should characterize how much

new and important information a word brings to
the sentence. The previous process yields the or-
thogonal basis vector qi. We propose that qi repre-
sents the novel semantic meaning brought by word
wi. We will now discuss how to quantify i) the
novelty of qi to other meanings in wi, ii) the sig-
nificance of qi to its context, and iii) the corpus-
wise uniqueness of qi w.r.t the whole corpus.

2.2 Novelty
We propose that a word wi is more important to a
sentence if its novel orthogonal basis vector qi is
a large component in vwi , quantified by the pro-
posed novelty score ↵n. Let r denote the last col-
umn of Ri, and r�1 denote the last element of r,
↵n is defined as:

↵n = exp(
kqik2
kvwik2

) = exp(
r�1

krk2
) (4)

Note that kqik2 = r�1 and kvwik2 = krk2. One
can show that ↵n is the exponential of the nor-
malized distance between vwi and the subspace
spanned by its context.

2.3 Significance
The significance of a word is related to how se-
mantically aligned it is to the meaning of its con-
text. To identify principal directions, i.e. mean-
ings, in the contextual window matrix Si, we em-
ploy Singular Value Decomposition.
Singular Value Decomposition. Given a ma-
trix A 2 Rd⇥n, there exists U 2 Rd⇥n

with orthogonal columns, diagonal matrix ⌃ =
diag(�1, ...,�n), �1 � �2 � ... � �n � 0, and
orthogonal matrix V 2 Rn⇥n, such that A =
U⌃V T .

The columns of U , {U:,j}nj=1, are an orthonor-
mal basis of A’s columns subspace and we pro-
pose that they represent a set of semantic mean-
ings from the context. Their corresponding singu-
lar values {�j}nj=1, denoted by �(A), represent
the importance associated with {U:,j}nj=1. The
SVD of wi’s contextual window matrix is Si =
U i⌃iV iT 2 Rd⇥(2m+1). It follows that qTi U

i is
the coordinate of qi in the basis of {U i

:,j}
2m+1
j=1 .

Intuitively, a word is more important if its novel
semantic meaning has a better alignment with
more principal meanings in its contextual window.
This can be quantified as k�(Si) � (qTi U

i)k2,
where � denotes element-wise product. There-
fore, we define the significance of wi in its context

q3

vloves

q2

q1 = vJohn

/19

Significance

• Absolute distance from context hyper-plane to word
embedding

10

𝛼$ =
𝒒𝒊 *

2𝑚 + 1

q3

vloves

q2

q1 = vJohn

/19

Corpus-wise uniqueness

• Similar idea to Inverse Document Frequency (IDF)
– Common words (e.g. the, a, is) → uniqueness ↓

• Offline processing:
– Calculate K corpus-wide principal vectors {d1, d2, …, dK}

• Sentence-dependent processing:
– Rank them according to correlation with sentence embedding
𝑺 = [𝒗/7, 𝒗/D, … , 𝒗/E]

– Take top h vectors D = [dt1, dt2, …, dth] (with singular values
σd)

11

to be:

↵s =
k�(Si)� (qTi U

i)k2
2m+ 1

(5)

It turns out ↵s can be rewritten as

↵s =
kqTi U i⌃ik2
2m+ 1

=
kqTi U i⌃iV ik2

2m+ 1

=
kqTi Sik2
2m+ 1

=
qTi vwi

2m+ 1
=

r�1

2m+ 1

(6)

and we use the fact that V i is an orthogonal
matrix and qi is orthogonal to all but the last col-
umn of Si, vwi . Therefore, ↵s is essentially the
distance between wi and the context hyper-plane,
normalized by the context size.

Although ↵s and ↵n look alike in mathemat-
ics form, they model distinct quantities in word
wi against its contextual window. ↵n is a func-
tion of kqik2 divided by kwik2, i.e., the portion
of the new semantic meaning in word wi. In con-
trast, eq. (6) shows that ↵s equals kqik2 divided
by a constant, namely ↵s quantifies the absolute
magnitude of the new semantic meaning qi.

2.4 Corpus-wise Uniqueness
Similar to the idea of inverse document frequency
(IDF) (Sparck Jones, 1972), a word that is com-
monly present in the corpus is likely to be a stop
word, thus its corpus-wise uniqueness is small. In
our solution, we compute the principal directions
of the corpus and then measure their alignment
with the novel orthogonal basis vector qi. If there
is a high alignment, wi will be assigned a rela-
tively low corpus-wise uniqueness score, and vice
versa.

2.4.1 Compute Principal Directions of
Corpus

In Arora et al. (2017), given a corpus contain-
ing a set of N sentences, an embedding matrix
X = [x1,x2, . . . ,xN] 2 Rd⇥N is generated,
where xi is the sentence embedding for the i-th
sentence in the corpus, computed by SIF algo-
rithm. Then principal vectors of X are computed
and projections onto the principal vectors are re-
moved from each sentence embedding xi.

In contrast to Arora et al. (2017), we do not
form the embedding matrix after we obtain the
final sentence representation. Instead, we obtain
an intermediate coarse-grained embedding matrix
Xc = [g1, . . . , gN] as follows. Suppose the

SVD of the sentence matrix of the ith sentence is
S = [vw1 , . . . ,vwn] = U⌃V T . Then the coarse-
grained embedding for the ith sentence is defined
as:

gi =
nX

j=1

f(�j)U:,j (7)

where f(�j) is a monotonically increasing func-
tion. We then compute the top K principal vectors
{d1, ...,dK} of Xc, with singular values �1 �
�2 � ... � �K .

2.4.2 Uniqueness Score
In contrast to Arora et al. (2017), we select differ-
ent principal vectors of Xc for each sentence, as
different sentences may have disparate alignments
with the corpus. For each sentence, {d1, ...,dK}
are re-ranked in descending order of their corre-
lation with sentence matrix S. The correlation is
defined as:

oi = �ikSTdik2, 1  i  K (8)

Next, the top h principal vectors after re-
ranking based on oi are selected: D =
{dt1 , ...,dth}, with ot1 � ot2 � ... � oth and their
singular values in Xc are �d = [�t1 , ...,�th] 2
Rh.

Finally, a word wi with new semantic mean-
ing vector qi in this sentence will be assigned a
corpus-wise uniqueness score:

↵u = exp (�k�d � (qTi D)k2/h) (9)

This ensures that common stop words will have
their effect diminished since their embeddings are
closely aligned with the corpus’ principal direc-
tions.

2.5 Sentence Vector
A sentence vector cs is computed as a weighted
sum of its word embeddings, where the weights
come from three scores: a novelty score (↵n), a
significance score (↵s) and a corpus-wise unique-
ness score (↵u).

↵i = ↵n + ↵s + ↵u

cs =
X

i

↵ivwi
(10)

We provide a theoretical explanation of Equa-
tion (10) in Appendix.

/19

おまけ: Sentence-dependent removal of
principle components (SDR)
• Sentence-independent removal (Arora+2017)

– Problem: suboptimal, each sentence has different meanings

• This work:

12

Published as a conference paper at ICLR 2017

Algorithm 1 Sentence Embedding

Input: Word embeddings {vw : w 2 V}, a set of sentences S , parameter a and estimated probabil-
ities {p(w) : w 2 V} of the words.

Output: Sentence embeddings {vs : s 2 S}
1: for all sentence s in S do

2: vs 1
|s|

P
w2s

a
a+p(w)vw

3: end for

4: Form a matrix X whose columns are {vs : s 2 S}, and let u be its first singular vector
5: for all sentence s in S do

6: vs vs � uu>vs
7: end for

cs to be emitted for two reasons: a) by chance from the term ↵p(w); b) if w is correlated with the
common discourse vector c0.

Computing the sentence embedding. The word embeddings yielded by our model are actually
the same. 2 The sentence embedding will be defined as the max likelihood estimate for the vector cs
that generated it. (In this case MLE is the same as MAP since the prior is uniform.) We borrow the
key modeling assumption of (Arora et al., 2016), namely that the word vw’s are roughly uniformly
dispersed, which implies that the partition function Zc is roughly the same in all directions. So
assume that Zc̃s is roughly the same, say Z for all c̃s. By the model (2) the likelihood for the
sentence is

p[s | cs] =
Y

w2s

p(w | cs) =
Y

w2s


↵p(w) + (1� ↵)

exp (hvw, c̃si)
Z

�
.

Let
fw(c̃s) = log


↵p(w) + (1� ↵)

exp (hvw, c̃si)
Z

�

denote the log likelihood of sentence s. Then, by simple calculus we have,

rfw(c̃s) =
1

↵p(w) + (1� ↵) exp (hvw, c̃si) /Z
1� ↵

Z
exp (hvw, c̃si) vw.

Then by Taylor expansion, we have,

fw(c̃s) ⇡ fw(0) +rfw(0)>c̃s

= constant +
(1� ↵)/(↵Z)

p(w) + (1� ↵)/(↵Z)
hvw, c̃si .

Therefore, the maximum likelihood estimator for c̃s on the unit sphere (ignoring normalization) is
approximately,3

argmax
X

w2s

fw(c̃s) /
X

w2s

a

p(w) + a
vw, where a =

1� ↵

↵Z
. (3)

That is, the MLE is approximately a weighted average of the vectors of the words in the sentence.
Note that for more frequent words w, the weight a/(p(w) + a) is smaller, so this naturally leads to
a down weighting of the frequent words.

To estimate cs, we estimate the direction c0 by computing the first principal component of c̃s’s for
a set of sentences.4 In other words, the final sentence embedding is obtained by subtracting the
projection of c̃s’s to their first principal component. This is summarized in Algorithm 1.

2We empirically discovered the significant common component c0 in word vectors built by existing meth-
ods, which inspired us to propose our theoretical model of this paper.

3Note that maxc:kck=1 C + hc, gi = g/kgk for any constant C.
4Here the first principal component is computed without centralizing c̃s’.

4

u: first principal component

Figure 1: An illustration of GEM algorithm. Top middle: The sentence to encode, with words w1 to wn. The
contextual window of word wi is inside the dashed line. Bottom middle: Form contextual window matrix Si for
wi, compute qi and novelty score ↵n (Section 2.1 and Section 2.2). Bottom left: SVD of Si and compute the
significance score ↵s (Section 2.3). Bottom right: Re-rank and select from principal components (orange blocks)
and compute uniqueness score ↵u (Section 2.4).

Algorithm 1 Geometric Embedding (GEM)
Inputs:

A set of sentences S , vocabulary V , word embeddings {vw 2 Rd |w 2 V}
Outputs:

Sentence embeddings {cs 2 Rd | s 2 S}
for ith sentence s in S do

Form matrix S 2 Rd⇥n, S:,j = vwj and wj is the jth word in s
The SVD is S = U⌃V T

The ith column of the coarse-grained sentence embedding matrix Xc
:,i is U(�(S))3

end for
Take first K singular vectors {d1, ...,dK} and singular values �1 � �2 � ... � �K of Xc

for sentence s in S do
Re-rank {d1, ...,dK} in descending order by oi = �ikSTdik2, 1  i  K.
Select top h principal vectors as D = [dt1 , ...,dth], with singular values �d = [�t1,�th].
for word wi in s do

Si = [vwi�m , ...,vwi�1 ,vwi+1 , ...,vwi+m ,vwi] is the contextual window matrix of wi.
Do QR decomposition Si = QiRi, let qi and r denote the last column of Qi and Ri

↵n = exp(r�1/krk2),↵s = r�1/(2m+ 1),↵u = exp (�k�d � (qTi D)k2/h)
↵i = ↵n + ↵s + ↵u

end for
cs =

P
vi2s ↵ivwi

Principal vectors removal: cs cs �DDTcs
end for

questions according to their similarity with respect
to the original question. Each retrieved question
Qi is labelled “PerfectMatch”, “Relevant” or “Ir-
relevant”, with respect to Qo. Mean average pre-
cision (MAP) is used as the evaluation measure.

We encode each question text into a unit vec-
tor u. Retrieved questions {Qi}10i=1 are ranked

according to their cosine similarity with Qo. Re-
sults are shown in Table 2. For comparison, we
include results from the best models in 2017 com-
petition: SimBow (Charlet and Damnati, 2017),
KeLP (Filice et al., 2017), and Reddit + SNLI
tuned. Note that all three benchmark models re-
quire learning on CQA training set, and SimBow

/19

Experiments
• Pretrained word embeddings

– LexVec, fastText, PSL (Wieting+ 2015)
• Hyper-parameters

– m = 7 (size of contextual window)
– K = 45 (# corpus-wide principal vectors)
– h = 17 (# sentence-dependent principal vectors)

• Testbed
– Unsupervised textual similarity task

• STS: semantic textual similarity (sentence pair → sim. Score)
• CQA: given a community question, rank 10 questions based on sim.

– Supervised task (sentiment analysis, textual entailment etc.)
• Linear classifier is learned on top of GEM embedding

13

/19

Results: STS, CQA
• STS

– Outperforms parameter-free models
except for uSIF

• uSIF depends on prior knowledge
statistics

– Close to SOTA parameterized model

• CQA
– Outperforms or comparable to

parametrized models trained on
training dataset

14

Sentence-Dependent Removal of Principal
Components. Arora et al. (2017) shows that given
a set of sentence vectors, removing projections
onto the principal components of the spanned sub-
space can significantly enhance the performance
on semantic similarity task. However, as each sen-
tence may have a different semantic meaning, it
could be sub-optimal to remove the same set of
principal components from all sentences.

Therefore, we propose the sentence-dependent
principal component removal (SDR), where we
re-rank top principal vectors based on correlation
with each sentence. Using the method from Sec-
tion 2.4.2, we obtain D = {dt1 , ...,dtr} for a sen-
tence s. The final embedding of this sentence is
then computed as:

cs cs �
rX

j=1

(dT
tjcs)dtj (11)

Ablation experiments show that sentence-
dependent principal component removal can
achieve better result. The complete algorithm is
summarized in Algorithm 1 with an illustration in
Figure 1.

2.6 Handling of out-of-vocabulary Words
In many NLP algorithms, the out-of-vocabulary
(OOV) words are projected to a special “UNK”
token. However, in this way, different OOV words
with drastically different meanings will share the
same embedding. To fix this problem, we change
this projection method by mapping OOVs to pre-
trained in-vocabulary words, based on a hash func-
tion SHA-256 of its characters. In this way, two
different OOV words will almost certainly have
different embeddings. In the experiments, we ap-
ply this OOV projection technique in both STS-B
and CQA tasks.

3 Experiments
3.1 Semantic Similarity Tasks: STS

Benchmark
We evaluate our model on the STS Benchmark
(Cer et al., 2017), a sentence-level semantic simi-
larity dataset. The goal for a model is to predict a
similarity score of two sentences given a sentence
pair. The evaluation is by the Pearson’s coefficient
r between human-labeled similarity (0 - 5 points)
and predictions.
Experimental settings. We report two versions
of our model, one only using GloVe word vectors

Non-parameterized models dev test

GEM + L.F.P (ours) 83.5 78.4
GEM + LexVec (ours) 81.9 76.5
SIF (Arora et al., 2017) 80.1 72.0
uSIF (Ethayarajh, 2018) 84.2 79.5

LexVec 58.78 50.43
L.F.P 62.4 52.0

word2vec skipgram 70.0 56.5
Glove 52.4 40.6
ELMo 64.6 55.9

Parameterized models

PARANMT-50M (Wieting and Gimpel, 2017a) - 79.9
Reddit + SNLI (Yang et al., 2018) 81.4 78.2

GRAN (Wieting and Gimpel, 2017b) 81.8 76.4
InferSent (Conneau et al., 2017) 80.1 75.8

Sent2Vec (Pagliardini et al., 2018) 78.7 75.5
Paragram-Phrase (Wieting et al., 2015a) 73.9 73.2

Table 1: Pearson’s r ⇥ 100 on STSB. Best results are
in bold.

GEM + L.F.P (ours) 49.11
Reddit + SNLI tuned 47.44

KeLP-contrastive1 49.00
SimBow-contrastive2 47.87

SimBow-primary 47.22

Table 2: MAP on CQA subtask B.

(GEM + GloVe), and the other using word vec-
tors concatenated from LexVec, fastText and PSL
(Wieting et al., 2015b) (GEM + L.F.P). The final
similarity score is computed as an inner product of
normalized sentence vectors. Since our model is
non-parameterized, it does not utilize any informa-
tion from the dev set when evaluating on the test
set and vice versa. Hyper-parameters are chosen at
m = 7, h = 17, K = 45, and t = 3 by conducing
hyper-parameters search on dev set. Results on the
dev and test set are reported in Table 1. As shown,
on the test set, our model has a 6.4% higher score
compared with another non-parameterized model
SIF, and 26.4% higher than the baseline of averag-
ing L.F.P word vectors. It also outperforms all pa-
rameterized models including GRAN, InferSent,
Sent2Vec and Reddit+SNLI.

3.2 Semantic Similarity Tasks: CQA
We evaluate our model on subtask B of the Se-
mEval Community Question Answering (CQA)
task, another semantic similarity dataset. Given
an original question Qo and a set of the first ten re-
lated questions (Q1, ..., Q10) retrieved by a search
engine, the model is expected to re-rank the related

Sentence-Dependent Removal of Principal
Components. Arora et al. (2017) shows that given
a set of sentence vectors, removing projections
onto the principal components of the spanned sub-
space can significantly enhance the performance
on semantic similarity task. However, as each sen-
tence may have a different semantic meaning, it
could be sub-optimal to remove the same set of
principal components from all sentences.

Therefore, we propose the sentence-dependent
principal component removal (SDR), where we
re-rank top principal vectors based on correlation
with each sentence. Using the method from Sec-
tion 2.4.2, we obtain D = {dt1 , ...,dtr} for a sen-
tence s. The final embedding of this sentence is
then computed as:

cs cs �
rX

j=1

(dT
tjcs)dtj (11)

Ablation experiments show that sentence-
dependent principal component removal can
achieve better result. The complete algorithm is
summarized in Algorithm 1 with an illustration in
Figure 1.

2.6 Handling of out-of-vocabulary Words
In many NLP algorithms, the out-of-vocabulary
(OOV) words are projected to a special “UNK”
token. However, in this way, different OOV words
with drastically different meanings will share the
same embedding. To fix this problem, we change
this projection method by mapping OOVs to pre-
trained in-vocabulary words, based on a hash func-
tion SHA-256 of its characters. In this way, two
different OOV words will almost certainly have
different embeddings. In the experiments, we ap-
ply this OOV projection technique in both STS-B
and CQA tasks.

3 Experiments
3.1 Semantic Similarity Tasks: STS

Benchmark
We evaluate our model on the STS Benchmark
(Cer et al., 2017), a sentence-level semantic simi-
larity dataset. The goal for a model is to predict a
similarity score of two sentences given a sentence
pair. The evaluation is by the Pearson’s coefficient
r between human-labeled similarity (0 - 5 points)
and predictions.
Experimental settings. We report two versions
of our model, one only using GloVe word vectors

Non-parameterized models dev test

GEM + L.F.P (ours) 83.5 78.4
GEM + LexVec (ours) 81.9 76.5
SIF (Arora et al., 2017) 80.1 72.0
uSIF (Ethayarajh, 2018) 84.2 79.5

LexVec 58.78 50.43
L.F.P 62.4 52.0

word2vec skipgram 70.0 56.5
Glove 52.4 40.6
ELMo 64.6 55.9

Parameterized models

PARANMT-50M (Wieting and Gimpel, 2017a) - 79.9
Reddit + SNLI (Yang et al., 2018) 81.4 78.2

GRAN (Wieting and Gimpel, 2017b) 81.8 76.4
InferSent (Conneau et al., 2017) 80.1 75.8

Sent2Vec (Pagliardini et al., 2018) 78.7 75.5
Paragram-Phrase (Wieting et al., 2015a) 73.9 73.2

Table 1: Pearson’s r ⇥ 100 on STSB. Best results are
in bold.

GEM + L.F.P (ours) 49.11
Reddit + SNLI tuned 47.44

KeLP-contrastive1 49.00
SimBow-contrastive2 47.87

SimBow-primary 47.22

Table 2: MAP on CQA subtask B.

(GEM + GloVe), and the other using word vec-
tors concatenated from LexVec, fastText and PSL
(Wieting et al., 2015b) (GEM + L.F.P). The final
similarity score is computed as an inner product of
normalized sentence vectors. Since our model is
non-parameterized, it does not utilize any informa-
tion from the dev set when evaluating on the test
set and vice versa. Hyper-parameters are chosen at
m = 7, h = 17, K = 45, and t = 3 by conducing
hyper-parameters search on dev set. Results on the
dev and test set are reported in Table 1. As shown,
on the test set, our model has a 6.4% higher score
compared with another non-parameterized model
SIF, and 26.4% higher than the baseline of averag-
ing L.F.P word vectors. It also outperforms all pa-
rameterized models including GRAN, InferSent,
Sent2Vec and Reddit+SNLI.

3.2 Semantic Similarity Tasks: CQA
We evaluate our model on subtask B of the Se-
mEval Community Question Answering (CQA)
task, another semantic similarity dataset. Given
an original question Qo and a set of the first ten re-
lated questions (Q1, ..., Q10) retrieved by a search
engine, the model is expected to re-rank the related

/19

Results: sentence embedding benchmark

• Outperforms all parameter free models, comparable to
supervised models in some tasks

15

Model Dim Training
time (h) MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E

Non-parameterized models

GEM + L.F.P 900 0 79.8 82.5 93.8 89.9 84.7 91.4 75.4/82.9 86.5 86.2
GEM + GloVe 300 0 78.8 81.1 93.1 89.4 83.6 88.6 73.4/82.3 86.3 85.3

SIF 300 0 77.3 78.6 90.5 87.0 82.2 78.0 - 86.0 84.6
uSIF 300 0 - - - - 80.7 - - 83.8 81.1

p-mean 3600 0 78.4 80.4 93.1 88.9 83.0 90.6 - - -
GloVe BOW 300 0 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 80.0 78.6

Paraemterized models

InferSent 4096 24 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 88.4 86.3
Sent2Vec 700 6.5 75.8 80.3 91.1 85.9 - 86.4 72.5/80.8 - -

SkipThought-LN 4800 336 79.4 83.1 93.7 89.3 82.9 88.4 - 85.8 79.5
FastSent 300 2 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - -
à la carte 4800 N/A 81.8 84.3 93.8 87.6 86.7 89.0 - - -

SDAE 2400 192 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - -
QT 4800 28 82.4 86.0 94.8 90.2 87.6 92.4 76.9/84.0 87.4 -

STN 4096 168 82.5 87.7 94.0 90.9 83.2 93.0 78.6/84.4 88.8 87.8
USE 512 N/A 81.36 86.08 93.66 87.14 86.24 96.60 - - -

Table 3: Results on supervised tasks. Sentence embeddings are fixed for downstream supervised tasks. Best results
for each task are underlined, best results from models in the same category are in bold. SIF results are extracted
from Arora et al. (2017) and Rücklé et al. (2018), and training time is collected from Logeswaran and Lee (2018).

removing 7 stop words, GEM still assigns pretty
similar embeddings for these two sentences.

We further demonstrate that GEM does assign
higher weights to words with more significant se-
mantic meanings. Consider the following sen-
tence: ”there are two ducks swimming in the
river”. Weights assigned by GEM are (sorted
from high to low): [ducks: 4.93, river:4.72 ,
swimming: 4.70, two: 3.87, are: 3.54, there:
3.23, in:3.04, the:2.93]. GEM successfully assigns
higher weight to informative words like ducks and
river, and downplay stop words like the and there.
More examples can be found in the Appendix.

Ablation Study. As shown in in Table 4, ev-
ery GEM weight (↵n,↵s,↵u) and proposed prin-
cipal components removal methods contribute to
the performance. As listed on the left, adding
GEM weights improves the score by 8.6% on
STS dataset compared with averaging three con-
catenated word vectors. The sentence-dependent
principal component removal (SDR) proposed in
GEM improves 1.7% compared to directly remov-
ing the top h corpus principal components (SIR).
Using GEM weights and SDR together yields an
overall improvement of 21.1%. As shown on the
right in Table 4, every weight contributes to the
performance of our model. For example, three
weights altogether improve the score in SUBJ task
by 0.38% compared with only using ↵n.

Sensitivity Study. We evaluate the effect of

Configurations STSB dev SUBJ

Mean of L.F.P 62.4 -
GEM weights 71.0 -

GEM weights + SIR 81.8 -
GEM weights + SDR 83.5 -

↵n + SDR 81.6 93.42
↵n,↵s + SDR 81.9 93.6

↵n,↵s,↵u + SDR 83.5 93.8

Table 4: Comparison of different configurations
demonstrates the effectiveness of our model on STSB
dev set and SUBJ. SDR stands for sentence-dependent
principal component removal in Section 2.4.2. SIR
stands for sentence-independent principal component
removal, i.e. directly removing top h corpus principal
components from the sentence embedding.

all four hyper-parameters in our model: the win-
dow size m in the contextual window matrix, the
number of candidate principal components K, the
number of principal components to remove h, and
the power of the singular value in coarse sentence
embedding, i.e. the power t in f(�j) = �t

j in
Equation (7). We sweep the hyper-parameters and
test on STSB dev set, SUBJ, and MPQA. Unspec-
ified parameters are fixed at m = 7, K = 45,
h = 17 and t = 3. As shown in Figure 2,
our model is quite robust with respect to hyper-
parameters.

/19

Results: Ablation study in STS

• ① Removal of corpus-wide principal components is
important (consistent with Arora+2017)
– Sentence-dependent removal makes it more effective

• ② Significance is not effective
• ③ Uniqueness is important

16

Model Dim Training
time (h) MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E

Non-parameterized models

GEM + L.F.P 900 0 79.8 82.5 93.8 89.9 84.7 91.4 75.4/82.9 86.5 86.2
GEM + GloVe 300 0 78.8 81.1 93.1 89.4 83.6 88.6 73.4/82.3 86.3 85.3

SIF 300 0 77.3 78.6 90.5 87.0 82.2 78.0 - 86.0 84.6
uSIF 300 0 - - - - 80.7 - - 83.8 81.1

p-mean 3600 0 78.4 80.4 93.1 88.9 83.0 90.6 - - -
GloVe BOW 300 0 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 80.0 78.6

Paraemterized models

InferSent 4096 24 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 88.4 86.3
Sent2Vec 700 6.5 75.8 80.3 91.1 85.9 - 86.4 72.5/80.8 - -

SkipThought-LN 4800 336 79.4 83.1 93.7 89.3 82.9 88.4 - 85.8 79.5
FastSent 300 2 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - -
à la carte 4800 N/A 81.8 84.3 93.8 87.6 86.7 89.0 - - -

SDAE 2400 192 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - -
QT 4800 28 82.4 86.0 94.8 90.2 87.6 92.4 76.9/84.0 87.4 -

STN 4096 168 82.5 87.7 94.0 90.9 83.2 93.0 78.6/84.4 88.8 87.8
USE 512 N/A 81.36 86.08 93.66 87.14 86.24 96.60 - - -

Table 3: Results on supervised tasks. Sentence embeddings are fixed for downstream supervised tasks. Best results
for each task are underlined, best results from models in the same category are in bold. SIF results are extracted
from Arora et al. (2017) and Rücklé et al. (2018), and training time is collected from Logeswaran and Lee (2018).

removing 7 stop words, GEM still assigns pretty
similar embeddings for these two sentences.

We further demonstrate that GEM does assign
higher weights to words with more significant se-
mantic meanings. Consider the following sen-
tence: ”there are two ducks swimming in the
river”. Weights assigned by GEM are (sorted
from high to low): [ducks: 4.93, river:4.72 ,
swimming: 4.70, two: 3.87, are: 3.54, there:
3.23, in:3.04, the:2.93]. GEM successfully assigns
higher weight to informative words like ducks and
river, and downplay stop words like the and there.
More examples can be found in the Appendix.

Ablation Study. As shown in in Table 4, ev-
ery GEM weight (↵n,↵s,↵u) and proposed prin-
cipal components removal methods contribute to
the performance. As listed on the left, adding
GEM weights improves the score by 8.6% on
STS dataset compared with averaging three con-
catenated word vectors. The sentence-dependent
principal component removal (SDR) proposed in
GEM improves 1.7% compared to directly remov-
ing the top h corpus principal components (SIR).
Using GEM weights and SDR together yields an
overall improvement of 21.1%. As shown on the
right in Table 4, every weight contributes to the
performance of our model. For example, three
weights altogether improve the score in SUBJ task
by 0.38% compared with only using ↵n.

Sensitivity Study. We evaluate the effect of

Configurations STSB dev SUBJ

Mean of L.F.P 62.4 -
GEM weights 71.0 -

GEM weights + SIR 81.8 -
GEM weights + SDR 83.5 -

↵n + SDR 81.6 93.42
↵n,↵s + SDR 81.9 93.6

↵n,↵s,↵u + SDR 83.5 93.8

Table 4: Comparison of different configurations
demonstrates the effectiveness of our model on STSB
dev set and SUBJ. SDR stands for sentence-dependent
principal component removal in Section 2.4.2. SIR
stands for sentence-independent principal component
removal, i.e. directly removing top h corpus principal
components from the sentence embedding.

all four hyper-parameters in our model: the win-
dow size m in the contextual window matrix, the
number of candidate principal components K, the
number of principal components to remove h, and
the power of the singular value in coarse sentence
embedding, i.e. the power t in f(�j) = �t

j in
Equation (7). We sweep the hyper-parameters and
test on STSB dev set, SUBJ, and MPQA. Unspec-
ified parameters are fixed at m = 7, K = 45,
h = 17 and t = 3. As shown in Figure 2,
our model is quite robust with respect to hyper-
parameters.

①

②
③

/19

Results: Inference speed

• Much faster than parameterized models!

17

Figure 2: Sensitivity tests on four hyper-parameters,
the window size m in contextual window matrix, the
number of candidate principal components K, the
number of principal components to remove h, and the
exponential power of singular value in coarse sentence
embedding.

Inference speed. We also compare the infer-
ence speed of our algorithm on the STSB test set
with the benchmark models SkipThought and In-
ferSent. SkipThought and InferSent are run on a
NVIDIA Tesla P100 GPU, and our model is run on
a CPU (Intel Xeon CPU E5-2690 v4 @2.60GHz).
For fair comparison, batch size in InferSent and
SkipThought is set to be 1. The results are shown
in Table 5. It shows that without acceleration from
GPU, our model is still faster than InferSent and is
54% faster than SkipThought.

Average run time (s) Variance

GEM (CPU) 20.08 0.23
InferSent(GPU) 21.24 0.15

SkipThought (GPU) 43.36 0.10

Table 5: Run time of GEM, InferSent and SkipThought
on encoding sentences in STSB test set. GEM is run on
CPU, InferSent and SkipThought is run on GPU. Data
are collected from 5 trials.

5 Conclusions

We proposed a simple non-parameterized method
to generate sentence embeddings, based entirely
on the geometric structure of the subspace spanned

by word embeddings1. Our sentence embed-
ding evolves from the new orthogonal basis vector
brought in by each word, which represents novel
semantic meaning. The evaluation shows that our
method not only sets up the new state-of-the-art of
non-parameterized models but also performs com-
petitively when compared with models requiring
either large amount of training data or prolonged
training time. In future work, we plan to consider
subwords into the model and explore more geo-
metric structures in sentences.

Acknowledgments

We would like to thank Jade Huang for proofread-
ing the paper and helpful writing suggestions. We
also acknowledge the anonymous reviewers for
their valuable feedback.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.

A simple but tough-to-beat baseline for sentence em-
beddings. International Conference on Learning
Representations.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Delphine Charlet and Geraldine Damnati. 2017. Sim-
bow at semeval-2017 task 3: Soft-cosine semantic
similarity between questions for community ques-
tion answering. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 315–319.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

1Code for GEM will be published soon

/19

Results: sensitivity to hyper-parameters

18

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

80

85

90

5 6 7 8 9
window size

Pe
rfo

rm
an

ce

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

80

85

90

35 45 55 65 75
K

●
● ● ● ●

● ● ●
● ●

● ● ● ● ●

80

85

90

8 11 14 17 20
h

Pe
rfo

rm
an

ce

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

80

85

90

1 2 3 4 5
power of s

●

●

●

MPQA
STSB
SUBJ

Figure 2: Sensitivity tests on four hyper-parameters,
the window size m in contextual window matrix, the
number of candidate principal components K, the
number of principal components to remove h, and the
exponential power of singular value in coarse sentence
embedding.

Inference speed. We also compare the infer-
ence speed of our algorithm on the STSB test set
with the benchmark models SkipThought and In-
ferSent. SkipThought and InferSent are run on a
NVIDIA Tesla P100 GPU, and our model is run on
a CPU (Intel Xeon CPU E5-2690 v4 @2.60GHz).
For fair comparison, batch size in InferSent and
SkipThought is set to be 1. The results are shown
in Table 5. It shows that without acceleration from
GPU, our model is still faster than InferSent and is
54% faster than SkipThought.

Average run time (s) Variance

GEM (CPU) 20.08 0.23
InferSent(GPU) 21.24 0.15

SkipThought (GPU) 43.36 0.10

Table 5: Run time of GEM, InferSent and SkipThought
on encoding sentences in STSB test set. GEM is run on
CPU, InferSent and SkipThought is run on GPU. Data
are collected from 5 trials.

5 Conclusions

We proposed a simple non-parameterized method
to generate sentence embeddings, based entirely
on the geometric structure of the subspace spanned

by word embeddings1. Our sentence embed-
ding evolves from the new orthogonal basis vector
brought in by each word, which represents novel
semantic meaning. The evaluation shows that our
method not only sets up the new state-of-the-art of
non-parameterized models but also performs com-
petitively when compared with models requiring
either large amount of training data or prolonged
training time. In future work, we plan to consider
subwords into the model and explore more geo-
metric structures in sentences.

Acknowledgments

We would like to thank Jade Huang for proofread-
ing the paper and helpful writing suggestions. We
also acknowledge the anonymous reviewers for
their valuable feedback.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.

A simple but tough-to-beat baseline for sentence em-
beddings. International Conference on Learning
Representations.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Delphine Charlet and Geraldine Damnati. 2017. Sim-
bow at semeval-2017 task 3: Soft-cosine semantic
similarity between questions for community ques-
tion answering. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2017), pages 315–319.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

1Code for GEM will be published soon

/19

Summary

• Proposed GEM parameter-free sentence encoder
✓Mathematically-well founded
✓Simple
✓Fast inference
✓Outperforms previous parameter-free models (sometimes

comparable to parametrized one)
• Implementation is available at:

https://github.com/fursovia/geometric_embedding

19

https://github.com/fursovia/geometric_embedding

