Inject Rubrics into Short Answer Grading System

Tianqi Wang1,3 Naoya Inoue1,3 Hiroki Ouchi3 Tomoya Mizumoto2,3 Kentaro Inui1,3
1Tohoku University 2Future Corporation 3RIKEN Center for Advanced Intelligence Project

Experimental Results

Task Introduction

Short Answer Grading (SAG) is a task of assessing the correctness of short answers to questions automatically.
- Answers are scored by graders with rubrics
- Time consuming especially when limited graders are available

Key Idea

- Consider student answers as combination of multiple key concepts.
- Answers are scored based on key concept identification

Contribution

- The first study that explores how to incorporate rubric information into neural SAG
- A general framework to extend existing neural SAG models with a component for exploiting rubric information

Proposed Model

An example of SAG

- Prompt: Starting with mRNA leaving the nucleus, list and describe four major steps involved in protein synthesis.

Experimental Results

- Dataset:
 - ASAP-SAS (5 prompts where key elements are explicitly provided)
 - 2226 answers for each prompt on average:
 - 1,704 answers as training set
 - 522 as test set
 - Train the model with various size of training data

Analysis of λ

- Value of λ learned from different size of training data
- Higher λ means less contribution from rubrics
- Rubric component contributes more when less training data is available

Instance of attention weights

- Left: The model successfully found words and phrases most related to the key element, helping the model improve the performance.
- Right: The model incorrectly aligned words in the answer and key element.