TOHOKU NLP LAB - 東北大学 乾・鈴木研究室TOHOKU NLP LAB - 東北大学 乾・鈴木研究室

MENU

Learning Deep Learning【Deep Learning勉強会】

Deep Learning 勉強会/概要

教材を輪読することで、深層学習の基礎や自然言語処理への応用を学びます。

2017

Date
3月30日~ 木曜日 10:00~12:00, 5月11日~ 火曜日 16:20~17:50
Members
松林,松田,横井,栗原,高橋,鶴田,清野,塙

内容

日程・担当

1 Introduction

2 Linear Algebra

3 Probability and Information Theory

4 Numerical Computation

5 Machine Learning Basics

6 Feedforward Deep Networks

7 Regularization

8 Optimization for Training Deep Model

9 Convolutional Networks

10 Sequence Modeling: Recurrent and Recursive Nets

11 Practical Methodology

12 Applications

13 Structured Probabilistic Models for Deep Learning

14 Monte Carlo Methods

15 Linear Factor Models and Auto-Encoders

16 Representation Learning

17 The Manifold Perspective on Representation Learning

18 Confronting the Partition Function

19 Approximate Inference

20 Deep Generative Models

過去の記録

Last-modified: 2018-11-02 (Fri) 14:07:18 (753d)

Recent Changes
Close